Strang-type Preconditioners for Solving Linear Systems from Delay Differential Equations

نویسندگان

  • F. R. LIN
  • X. Q. JIN
چکیده

We consider the solution of delay differential equations (DDEs) by using boundary value methods (BVMs). These methods require the solution of one or more nonsymmetric, large and sparse linear systems. The GMRES method with the Strang-type block-circulant preconditioner is proposed for solving these linear systems. We show that if a Pk1,k2 -stable BVM is used for solving an m-by-m system of DDEs, then our preconditioner is invertible and all the eigenvalues of the preconditioned system are clustered around 1. It follows that when the GMRES method is applied to solving the preconditioned systems, the method may converge fast. Numerical results are given to illustrate the effectiveness of our methods. AMS subject classification: 65F10, 65N22, 65L05, 65F15, 15A18.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strang-type Preconditioners for Solving Linear Systems from Neutral Delay Differential Equations

We study the solution of neutral delay differential equations (NDDEs) by using boundary value methods (BVMs). The BVMs require the solution of nonsymmetric, large and sparse linear systems. The GMRES method with the Strang-type block-circulant preconditioner is proposed to solve these linear systems. We show that if an Ak1,k2-stable BVM is used for solving an m-by-m system of NDDEs, then our pr...

متن کامل

Circulant Preconditioners for Solving Ordinary Differential Equations

In this paper, we consider the solution of ordinary diierential equations using boundary value methods. These methods require the solutions of one or more unsymmetric, large and sparse linear systems. Krylov subspace methods with the Strang block-circulant preconditioners are proposed for solving these linear systems. We prove that our preconditioners are invertible and all the eigenvalues of t...

متن کامل

Solving large systems arising from fractional models by preconditioned methods

This study develops and analyzes preconditioned Krylov subspace methods to solve linear systems arising from discretization of the time-independent space-fractional models. First, we apply shifted Grunwald formulas to obtain a stable finite difference approximation to fractional advection-diffusion equations. Then, we employee two preconditioned iterative methods, namely, the preconditioned gen...

متن کامل

Circulant preconditioners for solving singular perturbation delay differential equations

We consider the solution of singular perturbation delay di erential equations (SPDDEs) by using boundary value methods (BVMs). These methods require the solution of some nonsymmetric, large and sparse linear systems. The GMRES method with the Strang-type block-circulant preconditioner is proposed for solving these linear systems. We prove that if an Ak1 ; k2 -stable BVM is used for solving a sy...

متن کامل

Block {ω}-circulant preconditioners for the systems of differential equations

The numerical solution of large and sparse nonsymmetric linear systems of algebraic equations is usually the most time consuming part of time-step integrators for differential equations based on implicit formulas. Preconditioned Krylov subspace methods using Strang block circulant preconditioners have been employed to solve such linear systems. However, it has been observed that these block cir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003